AN UPPER BOUND FOR THE CARDINALITY OF AN s-DISTANCE SUBSET IN REAL EUCLIDEAN SPACE, II

EIICHI BANNAI¹, ETSUKO BANNAI and DENNIS STANTON²

Received 14 June 1982

It is shown that if X is an s-distance subset in \mathbb{R}^d , then $|X| \leq \left\{ \frac{d+s}{s} \right\}$.

0. Introduction

A subset X in a metric space M is called an s-distance subset in M if there are sdistinct positive distances $\alpha_1, \alpha_2, ..., \alpha_s$ and all the α_i are realized. Larman—Rogers—Seidel [5] proved that |X| = (d+1)(d+4)/2 for a 2-distance

subset in \mathbb{R}^d . Subsequently, Bannai—Bannai [1] proved that $|X| < \binom{d+s}{s} + \binom{d+s-1}{s-1}$ for an s-distance subset in \mathbb{R}^d . (That is, |X| < (d+1)(d+4)/2 for s=2). Then Blokhuis [2] has shown that $|X| \le (d+1)(d+2)/2$ for a 2-distance subset in \mathbb{R}^d . In the present paper we will generalize the result of Blokhuis [2] for all $s \ge 2$. Namely, we prove:

Theorem 1. If X is an s-distance subset in \mathbb{R}^d , then we have

$$|X| \le \binom{d+s}{s}.$$

Our basic idea of the proof of Theorem 1 is the same as that of Blokhuis [2]. However, in order to prove the result for all $s \ge 2$, we had to overcome certain technical complications. Theorem 2 and Theorem 3 which may be of independent interest, serve this purpose. A classical formula of Hobson on spherical harmonic plays an important role in the proof of Theorem 2.

We acknowledge that Theorem 1 was also proved by Blokhuis [3], independently.

Supported in part by NSF grant MCS7903128 A01.
 Supported in part by NSF grant MCS.

AMS subject classification (1980): 05 B 99; 51 M 99.

2. Theorem 2

In this section the following theorem, which may be of independent interest, will be proved:

Theorem 2. Let $x_1, ..., x_d$ be independent variables, and let us write $\partial_i = \partial/\partial x_i$. Let $0 \le l \le s+1$. Then we have:

the space spanned by
$$\{\partial_1^{b_1}\partial_2^{b_2}...\partial_d^{b_d}(x_1^2+x_2^2+...+x_d^2)^s\colon b_1+...+b_d=2s-l+1\}$$

= the space spanned by $\{x_1^{a_1}x_2^{a_2}...x_d^{a_d}\colon a_1+...+a_d=l-1\}.$

Remark. Theorem 2 is also stated in the following way. There are $\binom{2s-l+d}{d-1}$ partial differential operators $\partial_1^{b_1}\partial_2^{b_2}...\partial_d^{b_d}$ with $b_1+...+b_d=2s-l+1$, and there are $\binom{l-2+d}{d-1}$ monomials $x_1^{a_1}x_2^{a_2}...x_d^{a_d}$ with $a_1+...+a_d=l-1$.

monomials $x_1^{a_1}x_2^{a_2}...x_d^{a_d}$ with $a_1+...+a_d=l-1$. Let M be the $\binom{2s-l+d}{d-1}\times \binom{l-2+d}{d-1}$ matrix whose entries (of each row) are the coefficients of each $\partial_d^{b_1}...\partial_d^{b_d}(x_1^2+...+x_d^2)^s$ with respect to $x_1^{a_1}...x_d^{a_d}$. Then M has maximal rank. That is,

(1) rank of
$$M = \begin{pmatrix} l-2+d \\ d-1 \end{pmatrix}$$
, if $l = 0, 1, ..., s+1$, and

(2) rank of
$$M = {2s - l + d \choose d - 1}$$
, if $l = s + 1, ..., 2s$.

In order to prove Theorem 2 we first quote Hobson's formula:

Proposition 2.1. (Hobson) Let $P_t(\partial_1, ..., \partial_d)$ be homogeneous polynomial of degree t and let $F(x_1^2 + ... + x_d^2)$ be a function of $r^2 = x_1^2 + ... + x_d^2$. Then

(2.1)
$$P_t(\partial_1, ..., \partial_d)[F(x_1^2 + ... + x_d^2)] = \left[\sum_{k=0}^t \frac{2^{t-2k}}{k!} \cdot \frac{d^{t-k}}{d(r^2)^{t-k}} \cdot F \cdot \Delta^k\right] P_t(x_1, ..., x_d),$$
 where Δ is the Laplacian.

Proof. See Hobson [4, page 126, Eq. (6)]. Also, Hobson's formula is easily proved by induction on the degree of t in $P_t(\partial_1, ..., \partial_d)$. We may assume without loss of generality that P_t is a monomial of degree t, then apply ∂_1 to get

$$[\partial_1 P_t(\partial_1, ..., \partial_d)] F(r^2) = \sum_k \frac{2^{t-2k}}{k!} \left\{ F^{t-k}(r^2) [\Delta^k \partial_1 P_t] + 2x_1 F^{(t-k+1)}(r^2) \Delta^k P_t \right.$$

$$= \sum_k \frac{2^{t-2k+1}}{k!} F^{(t-k+1)}(r^2) [x_1 \Delta^k P_t + 2k \Delta^{k-1} \partial_1 P_t]$$

But $x_1 \Delta^k P_t + 2k \Delta^{k-1} = \Delta^k (x_1 P_t)$ so we are done by induction.

Proof of Theorem 2. We need only a special case of Proposition 2.1 to prove Theorem 2. If $H_t(x_1, ..., x_d)$ is a homogeneous harmonic polynomial of degree t then

$$(2.2) \ (H_{t-2j}(\partial_1, ..., \partial_d)\Delta^j)(x_1^2 + ... + x_d^2)^s = M(s, d, t, j)r^{2(s-t+j)}H_{t-2j}(x_1, ..., x_d),$$

where M(s, d, t, j) > 0 for $t-2j \ge 0$ and $t-s \le j$, and M(s, d, t, j) = 0 otherwise. In fact, the relation

(2.3)
$$\Delta(H_{t-2j}(x_1, ..., x_d)r^{2j}) = 2j(d+2t-2j-2)H_{t-2j}(x_1, ..., x_d)r^{2j-2}$$

coupled with Proposition 2.1 gives the following formula:

(2.4)
$$M(s, d, t, j) = \sum_{k=\max(t-s,0)}^{\min([t/2],j)} \frac{2^{t-2k}}{k!} s(s-1) \dots (s-t+k-1) \lambda(t,j) \dots$$
$$\dots \lambda(t-2k+2, j-k+1).$$

where $\lambda(t,j)=2j(d+2t-2j-2)>0$. (In fact, it is easy to evaluate the sum in (2.4) but we do not need this result.)

We find explicitly which polynomials $P_t(\partial_1, ..., \partial_d)$ annihilate $(x_1^2 + ... + x_d^2)^s$ for Theorem 2. This gives us the rank of the matrix M. Let $P_t(\delta_1, ..., \delta_d)$ be written uniquely as

(2.5)
$$P_{t}(\partial_{1},...,\partial_{d}) = \sum_{j=0}^{[t/2]} H_{t-2j}(\partial_{1},...,\partial_{d}) \Delta^{j}.$$

So (2.2) implies that $P_t(\delta_1, ..., \delta_d)(x_1^2 + ... + x_d^2)^s = 0$ if and only if

(2.6)
$$P_{t}(\partial_{1},...,\partial_{d}) = \sum_{j=0}^{t-s-1} H_{t-2j}(\partial_{1},...,\partial_{d}) \Delta^{j}.$$

Thus, for $t \le s$, $P_t \equiv 0$ and M has rank $\binom{t+d-1}{d-1} = \binom{2s-l+d}{d-1}$ if l = 2s-t+1 (=s+1), ..., 2s+1. For t > s, M has rank

(2.7)
$$\dim \text{Hom}(t) - \sum_{j=0}^{t-s-1} \dim \text{Harm}(t-2j) = \dim \text{Harm}(2s-t).$$

Cleraly, here the rank is

$$\binom{2s-t+d-1}{d-1} = \binom{l+d-2}{d-1} \quad \text{if} \quad l = 2s-t+1$$

This completes the proof of Theorem 2. \blacksquare

3. Theorem 3

In this section we prove the following theorem which may also be of independent interest.

Theorem 3. For i=1,2,...,N let $m_i \in \mathbb{R}$ and $y^{(i)} = (y_1^{(i)},...,y_d^{(i)}) \in \mathbb{R}^d$. For fixed integers $0 \le l-1 \le s$ suppose

$$\sum_{i=1}^{N} m_i \|x - y^{(i)}\|^{2s}$$

is a polynomial in $x = (x_1, ..., x_d)$ of degree $\leq 2s - l$. Then

$$\sum_{i=1}^{N} m_i (y_1^{(i)})^{a_1} \dots (y_d^{(i)})^{a_d} = 0$$

for any non-negative integers $a_1, ..., a_d$ such that $0 \le a_1 + ... + a_d \le l - 1$.

Proof. We have that $\sum_{i=1}^{N} m_i ||x-y^{(i)}||^{2s}$ is a polynomial of degree $\leq 2s-l$ in $x_1, ..., x_d$ if and only if

(3.1)
$$\partial_1^{b_1} \partial_2^{b_2} \dots \partial_d^{b_d} \left(\sum_{i=1}^N m_i \|x - y^{(i)}\|^{2s} \right) = 0$$

for all $b_1, b_2, ..., b_d$ with $2s-l+1 \le b_1 + ... + b_d \le 2s$. By Theorem 2 we have

$$(x_1 - y_1^{(i)})^{a_1} \dots (x_d - y_d^{(i)})^{a_d}$$

$$= \sum_{b_1 + \dots + b_d = 2s - l + 1} C_{b_1 \dots b_d}^{a_1 \dots a_d} \partial_1^{b_1} \dots \partial_d^{b_d} [(x_1 - y_1^{(i)})^2 + \dots + (x_d - y_d^{(i)})^2]^s$$

for some real numbers $C_{b_1...b_d}^{a_1...a_d}$ which do not depend on *i*. So, as polynomials in $x_1, ..., x_d$, we have

$$\sum_{i=1}^{N} m_i (x_1 - y_1^{(i)})^{a_1} \dots (x_d - y_d^{(i)})^{a_d}$$

$$= \sum_{i=1}^{N} m_i \sum_b C_{b_1 \dots b_d}^{a_1 \dots a_d} \partial_1^{b_1} \dots \partial_1^{b_d} ((x_1 - y_1^{(i)})^2 + \dots + (x_d - y_d^{(i)})^2)^s$$

$$= \sum_b C_{b_1 \dots b_d}^{a_1 \dots a_d} \sum_{i=1}^{N} m_i \partial_1^{b_1} \dots \partial_d^{b_d} ((x_1 - y_1^{(i)}) + \dots + (x_d - y_d^{(i)})^2)^2 = 0. \quad \text{(By (3.1).)}$$

By putting $x_1 = x_2 = ... = x_d = 0$, we get the desired result.

4. Completion of Proof of Theorem 1

Let X be an s-distance subset in \mathbb{R}^d with s nonzero distances $\alpha_1, ..., \alpha_s$. Let us set

(4.1)
$$F_{y}(x) = \prod_{i=1}^{s} (\|y - x\|^{2} - \alpha_{i}^{2}) / \prod_{i=1}^{s} \alpha_{i}^{2}.$$

In order to prove Theorem 1, we have only to show that the functions

(4.2)
$$F_{y}(x), (y \in X), \text{ and}$$
$$\{x_{1}^{\lambda_{1}}x_{2}^{\lambda_{2}} \dots x_{d}^{\lambda_{d}} : 0 \le \lambda_{1} + \lambda_{2} + \dots + \lambda_{d} \le s - 1\}$$

are linearly independent functions on \mathbb{R}^d , because it is shown in [1] that the space W_s spanned by these functions is of dimension at most $\binom{d+s}{s} + \binom{d+s-1}{s-1}$ and because

the space spanned by $\{x_1^{\lambda_1}x_2^{\lambda_2}...x_d^{\lambda_d}: 0 \le \lambda_1 + ... + \lambda_d \le s-1\}$ is of dimension $\binom{d+s-1}{s-1}$. Suppose that

(4.3)
$$\sum_{eX} C_y F_y(x) + \sum_{0 < \lambda, + \dots + \lambda_d < s - 1} C_{\lambda_1, \lambda_2, \dots, \lambda_d} \cdot x_1^{\lambda_1} \cdots x_d^{\lambda_d} = 0,$$

where $C_y(y \in X)$ and the $C_{\lambda_1,...,\lambda_d}$ are real numbers. We want to show that these are all 0. For this purpose, it is enough to show that

$$(4.4) \sum_{y \in V} C_y y_1^{\lambda_1} \dots y_d^{\lambda_d} = 0 \text{for} 0 \le \lambda_1 + \lambda_2 + \dots + \lambda_d \le s - 1.$$

If we choose $x=u\in X$ in (4.3) we get $(-1)^sC_n+\sum_i C_\lambda u^\lambda=0$. Multiplying this by C_n and summing over u yields

$$(4.5) \qquad (-1)^{s} \cdot \sum_{y \in X} C_{y}^{2} + \sum_{0 < \lambda_{1} + \ldots + \lambda_{d} \leq s - 1} C_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}} \cdot \sum_{y \in X} C_{y} y_{1}^{\lambda_{1}} y_{2}^{\lambda_{2}} \ldots y_{d}^{\lambda_{d}} = 0.$$

Then (4.4) implies that

(4.6)
$$\sum_{y \in Y} C_y^2 = 0$$
, and so

$$(4.7) C_{v} = 0 for all y \in X.$$

Finally, (4.3) now implies $C_{\lambda_1,...,\lambda_d} = 0$. Now, we want to prove (4.4) by induction on $\lambda_1 + ... + \lambda_d$. Comparing the coefficients of x^{2s} in (4.3), we have

$$(4.8) \sum_{y \in X} C_y = 0.$$

So, we assume that

$$(4.9) \quad \sum_{y \in X} C_y y_1^{\lambda_1} \dots y_d^{\lambda_d} = 0 \quad \text{for all} \quad \lambda_1, \dots, \lambda_d \quad \text{with} \quad \lambda_1 + \dots + \lambda_d \leq l - 2,$$

and we prove that

(4.10)

$$\sum_{y \in X} C_y y_1^{\lambda_1} \dots y_d^{\lambda_d} = 0 \quad \text{for all} \quad \lambda_1, \dots, \lambda_d \quad \text{with} \quad \lambda_1 + \dots + \lambda_d \leq l - 2 \quad \text{if} \quad l \leq s.$$

Next, we equate coefficients of $x^{2s-(l-1)}$ in (4.3). For $0 \le l \le s$, the second term has no such terms. So the coefficient of $x^{2s-(l-1)}$ in $\sum_{y \in X} C_y F_y(x)$ is zero. We compute this coefficient in another way by expanding (4.1) to find

$$(4.11) \quad \sum_{y \in X} C_y F_y(x) = \sum_{y \in X} C_y \sum_{t=0}^s A_t \|x - y\|^{2(s-t)} = \sum_{t=0}^s A_t \sum_{y \in X} C_y \|x - y\|^{2(s-t)}$$

for some real numbers $0 \neq A_0, A_1, ..., A_s$. Clearly $\sum_{y \in X} C_y ||x-y||^{2(s-t)}$ is a homogeneous polynomial in x and y of degree 2(s-t). By our assumption (4.9), the y terms of degree 0 to l-2 vanish. So, as a polynomial in x, $\sum_{y \in X} C_y ||x-y||^{2(s-t)}$ has degree 2(s-t)-(l-1). Thus the only term in (4.11) which allows degree 2s-(l-1) terms in x is t=0, and $\sum_{y\in X} C_y ||x-y||^{2s}$ is a polynomial in x of degree $\leq 2s-(l-1)$. However, there are no terms in $\sum_{y\in X} C_y F_y(x)$ with x degree 2s-(l-1), so $\sum_{y\in X} C_y ||x-y||^{2s}$ has degree $\leq 2s-(l-1)-1$. So Theorem 3 (with N=|X|, $m_i=C_y$) implies (4.10). Thus, by induction we have shown (4.4). This completes the proof of Theorem 1.

Remark. It would be interesting to know whether there are s-distance subsets in \mathbb{R}^d which attain the equality in Theorem 1. We do not know any such examples with $s \ge 2$ at present.

References

- [1] E. Bannai and E. Bannai, An upper bound for the cardinality of an s-distance subset in real Euclidean space, Combinatorica 1 (1981), 99—102.
- [2] A. BLOKHUIS, A new upper bound for the cardinality of 2-distance sets in Euclidean space, Eindhoven Univ. of Technology, Memorandum 1981—04, Feb. 1981.
- [3] A. BLOKHUIS, An upper bound for the cardinality of s-distance sets in E^d and H^d , Eindhoven Univ. Techn. Memorandum 1982—68, May 1982. (This is also part of his Ph. D. Thesis entitled "Few distance sets", 1983.)
- [4] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge, 1931.
- [5] D. G. LARMAN, C. A. ROGERS and J. J. SEIDEL, On two-distance sets in Euclidean space, Bull. London Math. Soc. 9 (1977), 261—267.

Eiichi Bannai and Etsuko Bannai

Department of Mathematics The Ohio State University Columbus, Ohio 43210, U.S.A. Dennis Stanton

School of Mathematics The University of Minnesota Minneapolis, Minnesota 55455, U.S.A.